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Abstract. In a 1989 paper [1], Arasu used an observation about
multipliers to show that no (352, 27, 2) difference set exists in any
abelian group. The proof is quite short and required no computer
assistance. We show that it may be applied to a wide range of
parameters (v, k, λ), particularly for small values of λ. With it a
computer search was able to show that the Prime Power Conjecture
is true up to order 2 · 1010, extend Hughes and Dickey’s computa-
tions for λ = 2 and k ≤ 5000 up to 1010, and show nonexistence
for many other parameters.

1. Introduction

A (v, k, λ)-difference setD in a groupG of order v is a set {d1, d2, . . . , dk}
of elements from G such that every nonzero element of G has exactly
λ representations as di − dj. The order of D is n = k − λ.

A (numerical) multiplier is an integer m for which multiplication of
each di by m produces a shift of the original difference set: mD = D+g
for some g ∈ G. The set of multipliers form a group M , and it is well-
known that some translate of D is fixed by M . This implies that a
shift of D can be written as a union of orbits of G under M .

The First Multiplier Theorem states that any prime p > λ which
divides n and not v must be a multiplier of D. The Multiplier Conjec-
ture is that the p > λ condition is not needed. This is still open, but
there have been many strengthenings of the First Multiplier Theorem;
see [8] for recent results.

Many difference set parameters can be dealt with by finding a group
of multipliers M and looking at the resulting orbits. For instance, it
may be that no union of orbits has size k, or the set of orbits may be
small enough that all possibilities may be checked with a short search.
Lander, in [10], gives many such examples.

Arasu [1] showed that no abelian biplanes (difference sets with λ =
2) of order 25 exist. Our main tool will be a generalization of his
argument, which we restate here.
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Theorem 1. No (352, 27, 2) difference set exists in any abelian group
G.

Proof. Any such difference set has 5 as a multiplier. Take p = 11, and
H a group of order 32 so that G = Z11 × H. Then 58 ≡ 1 (mod 32),
and so fixes H. The orbits of 〈58〉 in Z11 are {0}, {1, 3, 4, 5, 9}, and
{2, 6, 7, 8, 10}. The orbits in G are just these orbits with a fixed element
h ∈ H.

A difference set D made up of these orbits will have a certain number
a of 5-orbits 〈(1, h)〉 and 〈(2, h)〉, and b = 27− 5a 1-orbits. There are
b(b− 1) differences of the singleton orbits, each of which is of the form
(0, h) with h 6= 0. There are 31 such elements, and each must occur
exactly twice as a difference of elements of D, and so b(b−1) ≤ 31 ·2 =
62.

This means that we must have b < 9, and so a ≥ 4. But the
20 differences from elements in one 5-orbit are all of the form (x, 0),
x 6= 0. There are 10 such elements, and in fact each of them occurs
exactly twice in the differences of one 5-orbit. Since we have multiple
5-orbits, these elements will occur as differences too many times. �

One nice feature of this argument is that it takes care of all abelian
groups G of order 352 at once. Other arguments ([2], [10]) only handle
specific groups.

2. Extending the Method

It is clear that Arasu’s method can be applied to other parameter
sets. In this section we give a generalization of Theorem 1.

Lemma 2. Let G = Zp ×H, where H is abelian and gcd(p, |H|) = 1.
Let m be a multiplier of a (v, k, λ) difference set, and s be the smallest
positive integer for which ms ≡ 1 (mod exp(H)). Then the orbits of G
under 〈ms〉 are of the form (O, h), for fixed h ∈ H. There are exactly
|H| orbits (0, h) of size 1, and the remaining orbits all have the same
size o = ordp(m

s).

Proof. The proof of this is the same as for Theorem 1. The group of
multipliers generated by ms will fix all h ∈ H Because p is prime, all
the nonzero orbits of Zp under this group will have the same size, some
divisor of p− 1. �

Now for any (v, k, λ), if we can find a prime p|v and multiplier m for
which ms has a reasonably large order mod p, we can look at differences
of the 1-orbits and o-orbits and try to get a contradiction: if there are
a orbits of size o, and b 1-orbits, then we have:
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Theorem 3. Let G = Zp×H, where H is abelian and gcd(p, |H|) = 1.
Let m be a multiplier of a (v, k, λ) difference set, and s be the smallest
positive integer for which ms ≡ 1 (mod exp(H)), and o = ordp(m

s).
If there is no solution in positive integers a and b to:

k = ao+ b(1)

b(b− 1) ≤ λ(|H| − 1)(2)

a · o(o− 1) ≤ λ(p− 1)(3)

then no (v, k, λ) difference set exists in G.

This method will be most useful when λ is small, since each element
can only occur λ times as a difference, so whatever the choice of orbits
either elements of the form (x, 0) or (0, h) are likely to occur too many
times. Still, when n and v have large prime factors (n so that we
have a known multiplier, and v so that we have a suitable p to use in
Theorem 3), it can still often be applied.

When Theorem 3 fails, if G is cyclic we will sometimes use the the-
orem of Xiang and Chen [12]:

Theorem 4. Let D be a (v, k, λ) difference set in a cyclic group G with
multiplier group M . Except for the (21, 5, 1) difference set, |M | ≤ k.

This theorem may be extended to contracted multipliers as well (see
Section VI.5 of [4] for information about difference lists and contracted
multipliers).

Theorem 5. Let D be a (v, k, λ) difference set in a cyclic group G,
and H be the subgroup of G of order h and index u. Then with the
same exception, the group M of G/H-multipliers has order |M | ≤ k.

Proof. The proof is exactly the same as the proof of Theorem 4 in [12],
replacing multipliers with contracted multipliers. M is isomorphic to
a subgroup of Gal Q(ζu)/Q, where ζu is a primitive uth root of unity.
Let

S = D = {d1, d2, . . . , dk}
be the (u, k, h, λ) difference list over G/H obtained by sending the el-
ements of D to their image in G/H. By Theorem 5.14 of [4], we may
assume that S is fixed by M . Let χ be a generator of the charac-
ter group of G/H, K = Q (χ(S), χ2(S), . . . , χu−1(S)) , and αt be the
field automorphism sending ζu 7→ ζtu. As in [12], we may show that
Gal Q(ζu)/K = M . If t ∈ M it fixes S, so αt fixes χ(S). If αt fixes
χi(S) for i = 1, 2, . . . , u− 1, then by Fourier inversion t fixes S, and so
is in M .
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Now let

f(X) =
k∏

i=1

(
X − χ(di)

)
.

The coefficients of f(X) are elementary symmetric polynomials in the
χ(di), which are fixed by αt for any t ∈M , so f(X) ∈ K[X].

By Theorem 1 of Cohen [5], if D is not the (21,5,1) difference set,
then at least one of the di is relatively prime to v, and so χ(di) is a
primitive uth root of unity. It is also a root of f(X), and so

|M | = [Q(ζu) : K] ≤ deg f(X) = k.

�

3. The Prime Power Conjecture

A (v, k, 1) difference set is called a planar abelian difference set.
These exist if n = k − 1 is a prime power, and the Prime Power Con-
jecture (PPC) is that these are the only ones. In [6] it was shown
that the PPC is true for all groups for orders up to 2 · 106, and in [3]
for cyclic groups for orders up to 2 · 109. Peluse [11] recently showed
that the PPC is asymptotically true; the number of orders up to N for
which planar abelian difference sets exist is O(N/ logN), the same as
the number of prime powers.

In these papers non-prime power orders were eliminated by a series
of tests; see [6] for details. The initial tests only depended on the prime
factors of n and v, and were very fast. Tables 1 and 2 in [6] gave lists
of (v, k, 1) planar abelian difference set parameters which could not be
eliminated with these tests. To show they did not exist, Proposition
5.11 of Lander [10] was used:

Theorem 6. If t1, t2, t3, t4 are numerical multipliers of a (v, k, 1) dif-
ference set in G, and

t1 − t2 ≡ t3 − t4 (mod exp(G)),

then exp(G) divides lcm(t1 − t2, t1 − t3).

For each case a large number of multipliers were generated, until
either a prime known not to be an extraneous multiplier was discovered,
or two pairs of multipliers with the same difference modulo exp(G) were
found, so that Theorem 6 could be applied. These calculations required
a substantial amount of computation time and memory.

With Theorem 3 the hard cases from [6] can be eliminated quickly.
To illustrate the power of the theorem, Table 1 gives parameters used
in Theorem 3 to eliminate some of the parameters in the tables in [6];
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k p |H| ms ordp(m
s)

2436 5931661 1 51 435
24452 199291951 3 4991 6175
45152 22651 90003 277789 25
56408 24781 128397 433963 295
58724 450601 7653 838975 751
2444 109 54777 7465 9
3234 4759 2197 61507 61
72012 35911 144403 673245 513
73482 149113 36211 3739 2071

Table 1. Small (v, k, 1) parameters from Tables 1 and
2 of [6] eliminated by Theorem 3

k n v
1096386 5 · 219277 79 · 109 · 1951 · 71551
1320794 373 · 3541 3 · 11551 · 50341831
2378196 5 · 475639 211 · 631 · 3319 · 12799
20846324 61 · 341743 3 · 88951 · 1628496601
40027524 107 · 374089 7 · 13 · 3541 · 54163 · 91801

2830957656 5 · 566191531 1092 · 1171 · 1231 · 1951 · 239851
7700562788 9817 · 784411 3 · 612 · 1831 · 17032872

Table 2. (v, k, 1) parameters up to k = 2 · 1010 not
eliminated by Theorem 3

with the value of o in the last column, it is easy to check that there are
no positive integers a and b solving equations (1), (2) and (3).

Using Arasu’s method allows the computations to be redone in a
different manner. In addition, it requires far less work for the hard
cases, so it was possible to take the computations further. Replicating
the search up to 2 ·106 took under a minute on a workstation. A longer
run using the fast tests from [6] and Theorem 3 eliminated every order
up to 2 · 1010 except for the ones given in Table 2, which were then
eliminated using Theorem 6. Note that the first two values of k were
missing from the tables in [6].

Unlike the fast tests in [6], for which the number passing was roughly
linear in the bound on n, Theorem 3 gets more effective for larger
orders, since it becomes increasingly likely that v will have a large
prime factor p for which some prime divisor of n has large order mod
p. All values of k between 7.7 · 109 and 2 · 1010 were eliminated, and
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k n v
47433 47431 13693 · 82153
86013 86011 7 · 71 · 883 · 8429
890196 2 · 445097 396224014111
1120521 1120519 83059 · 7558279
1767189 1767187 7 · 223068228181

937097469 937097467 19942759 · 22016804833

Table 3. Open (v, k, 2) cases for k ≤ 1010

a heuristic argument suggests that the number of cases up to order n
passing Theorem 3 will be at most O(log n).

4. Biplanes

Theorem 1 was also shown by Hughes in [9]. Computations by
Hughes and Dickey reported in that paper showed that no abelian
(v, k, 2) difference sets exist with order less than 5000, except for the
known cases k = 3, 4, 5, 6 and 9. They give few details about their
method; it is possible that their method was something similar to that
of Arasu.

A run up to order 1010 eliminated all but 24 parameters. Most of
the rest were dealt with using Theorems 4.19 and 4.38 of Lander [10].
Table 3 gives the remaining open cases.

Theorem 5 was an important tool for eliminating open cases in
this and the next table. Biplanes of order a power of 4, such as
(525826, 1026, 2), pass Theorem 3, and have no known multipliers, so
the standard methods are no help. However, in each case up to order
230 we have that G is cyclic, 2 is a G/H multiplier for H the group of
order 2 by the Contracted Multiplier Theorem (Corollary 5.13 of [4]),
and the order ordv/2(2) is larger than k, showing that those biplanes
do not exist.

5. General Parameters

Theorem 3 may be applied for larger λ; while more parameters will
slip through because of a lack of known multipliers or Equations (2)
and (3) being less restrictive, many may still be eliminated. A run was
done for difference sets with λ = 3 up to order 1010. There were 269
parameters that passed Theorem 3, but most were then eliminated with
Theorems 4 and 5, the Lander tests, and the Mann test ([4], Theorem
VI.6.2). Table 4 shows the six remaining cases.
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k n v
120 32 · 13 32 · 232

441 2 · 3 · 73 71 · 911
2350 2347 1840051

740406 32 · 82267 34 · 19391 · 116341
3793567 22 · 948391 52 · 251 · 397 · 463 · 4159

289842739 24 · 18115171 3 · 5 · 23 · 1032 · 137 · 2232 · 1123

Table 4. Open (v, k, 3) cases for k ≤ 1010

The author has set up the La Jolla Difference Set Repository [7],
an online database containing existence results for parameters up to
v = 106, as well as a large number of known difference sets. There are
1.44 million parameters that pass basic counting and the BRC theorem,
of which about 180,000 were open. Applying Theorems 3 and 5 resolved
over 50,000 of them.
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