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Abstract

The Prime Power Conjecture (PPC) states that abelian planar difference

sets of order n exist only for n a prime power. Lander and others have shown

that orders divisible by certain composites can be eliminated. In this paper we

show how to extend this list of excluded orders.
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1 Introduction

Let G be a group of order v, and D be a set of k elements of G. If the set of

differences di − dj contains every nonzero element of G exactly λ times, then D is

called a (v, k, λ)-difference set in G. The order of the difference set is n = k − λ. If
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λ = 1, the difference set is called planar. We will be concerned with abelian planar

difference sets.

A multiplier is an automorphism α of G which takes D to a translate g + D of

itself for some g ∈ G. If α is of the form α : x → tx for t ∈ Z relatively prime to the

order of G, then α is called a numerical multiplier.

The First Multiplier Theorem says that for a planar abelian difference set of order

n any divisor t of n will be a numerical multiplier. A common approach to proving

nonexistence of difference sets is to look at the group of numerical multipliers and

find necessary conditions on n. One tool for this is the following theorem of Lander

[8], which was shown by Hall [6] in the cyclic case:

Theorem 1.1 Let D be a planar abelian difference set of order n in G. If t1, t2, t3,

and t4 are numerical multipliers such that

t1 − t2 ≡ t3 − t4 (mod exp(G)),

then exp(G) divides the least common multiple of (t1 − t2, t1 − t3).

The cyclic version of this test was the main tool used by Evans and Mann [4] to

show the nonexistence of non–prime power difference sets for n ≤ 1600. It was used

by the author [5] to show that the Prime Power Conjecture is true for orders less than

2, 000, 000.

Suppose for given primes p1, p2, . . . pr, we can find {t1, t2, t3, t4} where the ti are

products of powers of the pj’s and t1 − t2 = t3 − t4. Since the ti are multipliers

of any planar abelian difference set of order n divisible by p1p2 · · · pr by the First

Multiplier Theorem, and exp(G) = |G| = n2 + n + 1 for G cyclic, the only possible

cyclic difference sets have n2 + n + 1|lcm(t1 − t2, t1 − t3). For example, any planar
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cyclic difference set of order dividing 26 has multipliers 1, 4, 13 and 16, and so

n2 + n+ 1|lcm(4 − 1, 13 − 1) = 3.

For non–cyclic groups, the exponent of the group may be much smaller than v.

Lander showed that the exponent ofG cannot be a multiple of 2, 5 or 9 (since n2+n+1

has no solution modulo any of those numbers), and so if lcm(t1 − t1, t1 − t3) = 2a3b5c,

the only cases we have to worry about is v = 1 and v = 3, which are impossible.

That left open orders a multiple of 22, 46 and 58, where the lcm was 2a3b5c7d.

Jungnickel and Pott [7] excluded these cases by showing that an abelian planar dif-

ference set of even order cannot exist in a group of exponent 7 or 21. These results

together show:

Theorem 1.2 Let D be a planar abelian difference set of order n. Then n cannot be

divisible by 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62 or 65.

In the next section we will generalize these arguments, which will allow us to

add other many more excluded orders to this list. These excluded orders could have

greatly reduced the time needed to eliminate all small orders in [5].

2 Possible Exponents of G

Let D be a difference set of order n in a group G. The order of G is v = n2 + n + 1,

and its exponent is a divisor of v.

Theorem 2.1 The exponent of G is divisible by at most one power of 3. All its other

prime divisors are primes p ≡ 1 (mod 3), which may occur to any power.

Proof: Suppose p|n2 + n+ 1. Then f(x) = x2 + x+ 1 has a root mod p, and so p

splits or ramifies in the field K = Q(
√
−3). The only prime that ramifies in this field
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6 10 14 15 21 26 33 34
35 38 39 51 55 57 62 65
91 122 123 133 145 155 219 249
267 301 482 489 505 514 542 671
679 703 723 753

Table 1: Orders less than 1000 excluded by Theorem 2.3

is 3, and only a single power of 3 can divide v. Only primes ≡ 1 (mod 3) split. By

Hensel’s Lemma, any of these primes can divide v to arbitrarily high powers.

Corollary 2.2 Suppose that for an order n, {t1, t2, t3, t4} have been found which are

products of prime divisors of n and have t1 − t2 = t3 − t4. If lcm(t1 − t2, t1 − t3) is

divisible only by powers of 3, primes dividing n, and primes p ≡ 2 (mod 3), then no

difference set of order ≡ 0 mod n exists.

Proof: By Theorem 1.1, exp(G) divides the lcm. By Theorem 2.1, no p ≡ 2

(mod 3) and at most one power of 3 can divide v. Since v and n are relatively

prime, primes dividing n are also excluded, so we have exp(G) = 3 and v = 3k, but

no such difference sets exist.

Lander [8] used a special case of the above corollary to get his result, using t’s

with least common multiples of the form 2a3b5c to exclude 13 orders up to 65 (he left

out 34, 35 and 39). By carrying the calculations further, we may exclude many more

orders:

Theorem 2.3 There are no planar abelian difference sets with orders a multiple of

any of the numbers given in Table 1.

We omit the t1, . . . t4 which provide the proofs for the orders in Table 1. They were

found by generating all combinations of powers of divisors of n less than one million,
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and looking for pairs with common differences. Those for which lcm(t1 − t2, t1 − t3)

satisfies the conditions of 2.2 cannot have a difference set.

For example, for n = 753 = 251 · 3, take t1 = 251, t2 = 9 = 32, t3 = 243 = 35, and

t4 = 1. We have 251 − 9 = 243 − 1, and lcm(251 − 9, 251 − 243) = 24 · 112.

3 Dealing with splitting primes

There are many values of n for which lcm(t1 − t2, t1 − t3) will always be divisible by

a splitting prime. For example, for n = 22, since 〈11 mod 7〉 and 〈2 mod 7〉 are both

{1, 2, 4}, any set of t’s for which t1 − t2 = t3− t4 will have lcm(t1− t2, t1− t3) divisible

by 7.

Jungnickel and Pott [7] showed that there are no difference sets in groups of

exponent 7 or 21. Their arguments, which involve looking at the values of n, divisors

of n, and v modulo 3 and 4, could be extended to some other exponents, but would

have to be done on a case-by-case basis, and would not work for all exponents. We take

another approach, using the arithmetic of Q(
√
−3) and results about Diophantine

equations to get a method which works for a large family of exponents.

Suppose that for some n we have lcm(t1−t2, t1−t3) divisible by primes p1, p2, . . . , pr

congruent to 1 mod 3. Any planar abelian difference set of order n a multiple of

p1 · · · pr is a solution to

n2 + n+ 1 = 3ǫ · pk11 · pk22 · · · pkr

r , (1)

where ǫ is 0 or 1, depending on whether the lcm is divisible by 3. By [5], if we can

show that all solutions to (1) have n < 2,000,000, then no such difference sets exist.

In the previous section we dealt with the case r = 0. For larger r, the following

theorem shows that only a finite amount of work is needed for each case.
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Theorem 3.1 For any fixed r ≥ 0 and p1, . . . , pr, there are only a finite number of

solutions to (1).

Proof: Consider how (1) factors in Q(
√
−3). Let β = (1 +

√
−3)/2. Then (1)

becomes

(n− β)(n− β̄) = 3ǫ℘k11 ℘̄
k1
1 · · ·℘kr

r ℘̄
kr

r

where each pi = ℘i℘̄i. Each ℘i can only divide one of n − β and n − β̄. Thus, for

some choice of γ with γγ̄ = 3ǫ and which factor of pi is called ℘i, we have

(n− β) = γ℘k11 · · ·℘kr

r

and

(n− β̄) = γ̄℘̄k11 · · · ℘̄kr

r .

Subtracting these two equations, we get

β − β̄ = γ℘k11 · · ·℘kr

r − γ̄℘̄k11 · · · ℘̄kr

r .

Let λ = γ/(β − β̄), and

Gk1,...,kr
= λ℘k11 · · ·℘kr

r − λ̄℘̄k11 · · · ℘̄kr

r .

Then we are looking for solutions to Gk1,...,kr
= 1, for which

∣

∣

∣

∣

∣

∣

λ

λ̄

(

℘1

℘̄1

)k1

· · ·
(

℘r
℘̄r

)kr

− 1

∣

∣

∣

∣

∣

∣

=
1

|λ̄| p
−k1/2
1 · · · p−kr/2

r .

To see that there are only finitely many such solutions, let ψ = log(λ/λ̄), ϕi =

log(℘i/℘̄i), and choose m such that |ψ +
∑r
i=1 kiϕi + m| ≤ 1/2. Let Λ = 2πi(ψ +

∑r
i=1 kiϕi +m).
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Then

|Λ| = 2π|ψ +
r
∑

i=1

kiϕi +m| ≤ π

2

∣

∣

∣e2πi(ψ+
∑

r

i=1
kiϕi+m) − 1

∣

∣
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=
π

2

∣

∣

∣
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∣
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)

·
r
∏

i=1

(

℘i
℘̄i

)ki

− 1

∣

∣

∣

∣

∣

∣

=
π

2

1

|µ| · p
−k1/2
1 · · · p−kr/2

r .

To prove the theorem, we can combine this equation with lower bounds for lin-

ear forms in logarithms. Such bounds were first introduced by Baker [1], and have

improved over the years. The following theorem is a special case of the best current

result, due to Baker and Wüstholz [2].

Theorem 3.2 For Λ 6= 0 defined as above, and K = max{k1, . . . , kr}, we have

log |Λ| > −(32r)2(r+2) log p1 · · · log pr logK.

Together with (2), this proves that there are only a finite number of solutions to

(1).

Note that the bound of Theorem 3.1 is too large to actually check, even in small

cases. Fortunately, de Weger [3] gives algorithms for reducing the bounds to manage-

able numbers. For r = 1, Algorithm I of [3] uses the continued fraction expansion of

ϕ. It finds a new bound on k = k1 such that any solution greater than that bound

must be a simple function of the convergents. By repeatedly applying the algorithm,

k is typically reduced to a number as small as 6. The largest prime p1 needed for any

of the orders in Table 2 was 103.

For r ≥ 2, lattice reduction is used in place of the continued fraction expansion

to reduce the bounds (see Chapter 7 of [3] for a discussion of the multidimensional

problem). The computational demands go up rapidly with r, but only three orders
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22 46 58 86 87 94 134 142
146 158 159 194 226 237 254 262
321 386 526 611 745 766 807 898

Table 2: Orders less than 5000 with r = 1

less than 1000 require r = 2: 183, 362 and 382. The first two have p1 = 13, p2 = 7,

and for 382 we have p1 = 127, p2 = 7.

Several computer programs were used to form the tables and eliminate each order.

The first step was to find sets of t’s for each n with the fewest number of primes

≡ 1 mod 3 dividing the lcm. For each such n, the continued fraction method (for

r = 1) or L3 method (for r = 2) were used to get reasonable bounds for K. After

that, it was a simple matter to exhaustively check for solutions to Gk1,...,kr
= 1. Of the

solutions that were found, all had n < 2,000,000, and all such orders were eliminated

in [5].
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