
Discrete Logarithms in GF (p) using the Number

Field Sieve

Daniel M. Gordon
Department of Computer Science

University of Georgia
Athens, GA 30602

dan@pollux.cs.uga.edu

February 24,1992

Abstract

Recently, several algorithms using number field sieves have been given
to factor a number n in heuristic expected time Ln[1/3; c], where

Ln[v; c] = exp{(c + o(1))(log n)v(log log n)1−v},

for n → ∞.
In this paper we present an algorithm to solve the discrete logarithm

problem for GF (p) with heuristic expected running time Lp[1/3; 32/3].
For numbers of a special form, there is an asymptotically slower but more
practical version of the algorithm.

Keywords. discrete logarithms, number field sieve

AMS (MOS) Classification. 11Y16

1 Introduction

Given a prime p and integers a and b, the discrete logarithm problem in GF (p)
is to find an integer x (if any exists) such that

ax ≡ b (mod p). (1)

The difficulty of computing discrete logarithms has been used in the con-
struction of several cryptographic systems (see for example [18]). The most
successful implementation of a discrete logarithm algorithm for GF (p) to date
is by Odlyzko and LaMacchia [13], who solved the discrete logarithm problem
modulo primes of 58 and 67 digits using the Gaussian integers method. This

1

method, introduced by Coppersmith, Odlyzko and Schroeppel in [9], uses a
complex quadratic field to aid the sieving process.

Define
Lx[v; c] = exp{(c+ o(1))(log x)v(log log x)1−v}, (2)

for x → ∞. The Gaussian integers method, as well as several other methods
described in [9], find discrete logarithms for GF (p) in expected time Lp[1/2; 1].

The idea of using number field sieves has been used recently for factoring.
Lenstra, Lenstra, Manasse and Pollard [16] have used a number field sieve to
obtain rapid factorizations of numbers of the form re±s, for small r and s. Buh-
ler, Lenstra and Pomerance [6] have generalized this method to factor general
numbers n in time Ln[1/3; c]. Adleman [1] and Coppersmith [8] have suggested
further improvements.

Some necessary facts and heuristic assumptions about algebraic number the-
ory and linear algebra computations will be discussed in Section 2. In Section 3
an overview of an algorithm for computing discrete logarithms in GF (p) using
the number field sieve is given. Using these results and assumptions, Section 4
shows that the algorithm works in expected time Lp[1/3; 32/3]. Another version
for special numbers, which is asymptotically slower but more practical, will be
given in Section 5.

2 Computational Background

There are a number of specialized algorithms and heuristic assumptions which
are needed to give a good running time for finding discrete logarithms with the
number field sieve. Similar assumptions are used in [16] for estimating the time
needed to factor with the number field sieve.

2.1 Smoothness

Call an integer y-smooth if all of its prime factors are at most y. Let ψ(x, y)
be the number of integers ≤ x which are y-smooth. We need results about
the probabilities of various rational and algebraic integers being smooth. The
following special case of a theorem of Canfield, Erdős, and Pomerance [7] gives
an estimate for the probability of a number in a given range being smooth.

Theorem 1 Suppose 0 < w < v ≤ 1, γ > 0, and δ > 0 are fixed. Let x and y
be functions of p such that x = Lp[v; γ] and y = Lp[w; δ] for p→ ∞. Then

ψ(x, y)

x
= Lp[v − w;−γ

δ
(v − w)]

for p→ ∞.

The ratio ψ(x, y)/x is the probability that a random number in (0, x] is y-
smooth. In this paper, we will be dealing with numbers near x which are not
random, but we will use the heuristic assumption that their probability of being

2

smooth is also given by Theorem 1. For example, we will assume that numbers
of the form c + dm, for c and d running through a narrow range and m fixed,
are smooth as often as random numbers of the same size.

The elliptic curve method (ECM) for factoring an integer n depends on
finding an elliptic curve for which the order of the curve modulo a prime divisor
of n is smooth (see [14]). The following conjecture implies that enough such
curves exist so that the ECM can expect to find one in reasonable time.

Conjecture 1 Given the conditions of Theorem 1, the probability that a ran-
dom number in (x−√

x, x+
√
x) is y-smooth is Lp[v−w;−γ

δ (v−w)] for p→ ∞.

This conjecture implies the following special case of Conjecture (2.10) of [14].

Conjecture 2 The expected time for the ECM to factor an Lp[v; c]-smooth in-
teger in [0, p] is Lp[v/2;

√
2vc] for p→ ∞.

2.2 Linear Algebra

Another operation that will take a large part of the computation time is dealing
with matrix equations over Q. Given an S × T sparse integer matrix A, where
S > T and the entries in A are all at most T in absolute value, we need to
be able to find a linear relation over Q for the rows of A. This may be done
by the following algorithm, due to Pomerance [21] (see [12] for an alternative
algorithm).

Algorithm M: Let A be a (T + 1)×T matrix over Z, with each row having at
most E non-zero entries, each of absolute value at most T . This probabilistic
algorithm returns a linear relation for the rows of A.

Step 1: Attempt to compute the rank r of A.
Choose a random prime q0 ≤ ET logT . By using Gaussian elimination mod q0,
find the rank r0 of A mod q0. Rearrange the rows so that the first r0 rows are
linearly independent mod q0. Call the rearranged rows v1, v2, . . . , vT+1. The
result of the Gaussian elimination determines an r0 × r0 submatrix Â of the
first r0 rows of A such that Â is nonsingular mod q0.

Step 2: Attempt to express vr0+1 as a linear combination of v1, . . . , vr0
mod q

for each prime q ≤ ET logT .
We attempt this via Wiedemann’s coordinate recurrence method [24]. Let P
denote the product of the primes q for which we are successful, and let P′ denote
the product of the remaining primes up to ET logT . If P′ > (E1/2T)T , then
return to step 1 and begin again.

Step 3: Attempt to compute the determinant D of Â.
For each prime q|P, use Wiedemann’s probabilistic determinant algorithm [24]
to compute an integerDq ∈ {0, 1, . . . , q−1} which is the determinant of Â mod q
with probability at least 1 − (ET)−2. Use the Chinese remainder theorem to

3

compute the integer D0 closest to 0 with D0 ≡ Dq mod q for each prime q|P.
Repeat this step until a value of D0 is found with 0 < |D0| ≤ (E1/2T)T .

Step 4: Attempt to produce a linear relation among the rows of A.
With the Chinese remainder theorem and the results of steps 2 and 3, compute
the integers c1, . . . , cr0

closest to 0 such that

D0vr0+1 ≡
r0
∑

i=1

civi (mod P).

If any ci has absolute value exceeding (E1/2T)T , return to step 3. Otherwise,
we have found the relation

D0vr0+1 =

r0
∑

i=1

civi. (3)

Theorem 2 Suppose T ≥ E ≥ 12. If Algorithm M terminates, then (3) is a
correct equation. The expected running time of Algorithm M is O(E2T 3 log3 T).

Proof: By the assumptions on A, we have ‖ vi ‖ ≤ E1/2T for each row vi of A.
Thus by Hadamard’s inequality, the absolute value of the determinant of any
submatrix of A is at most (E1/2T)T . From results of Rosser and Schoenfeld
[22], it follows that the number of distinct prime factors of any such non-zero
determinant is less than 2T . However, from the same reference, the number
π(ET logT) of primes q ≤ ET logT exceeds ET/3. We can thus conclude that
for at least half of the primes q ≤ ET logT , the rank of A mod q is equal to
the rank r of A over Q. Thus with probability at least 1/2, the number r0
returned in step 1 is equal to r. The running time for one iteration of step 1 is
O(T 3 log2 T) bit operations.

If r0 = r, then vr0+1 is a linear combination of v1, . . . , vr0
over Q, and the

least common denominator of the rational scalars involved divides the determi-
nant D of Â. Thus if r0 = r, then P′ ≤ (E1/2T)T . If vr0+1 is a linear com-
bination of v1, . . . , vr0

mod q, then Wiedemann’s coordinate recurrence method
will be able to express vr0+1 as such a linear combination in O(ET 2) operations
mod q. Thus the running time for one iteration of step 2 is O(E2T 3 log2 T) bit
operations.

Wiedemann’s determinant-finding algorithm can calculate the correct deter-
minant with probability at least 1 − (ET)−2 in O(ET 2 logT) operations mod
q. Among all the numbers Dq computed in step 3, the probability that at least
one such Dq is not congruent to D mod q is at most π(ET logT)(ET)−2. From
[22] we have π(ET logT) < 2ET . Thus the probability that the number D0

computed in step 3 is not D is at most 2(ET)−1. The time for the Chinese

4

remainder theorem is O(log2 P), which is O((ET logT)2) by [22]. The total
time for step 3 is O(E2T 3 log3 T) bit operations.

If D0 = D, then D0vr0+1 is an integral combination of v1, . . . , vr0
, and the

integer scalars c1, . . . , cr0
are all at most (E1/2T)T in absolute value. Since

P > 2(E1/2T)T , knowing those scalars mod P is enough to determine them.
Thus if D0 = D, then step 4 will be successful; that is, we will not need to
return to step 3. Further, (3) is a correct equation. The running time of step 4
is O(E2T 3 log2 T). 2

For the special number field sieve we will only need to solve matrix equations
modulo p−1. This may be done using Wiedemann’s algorithm in O(ET 2 log2 T)
bit operations for matrices satisfying the conditions specified in Algorithm M. If
the factorization of p− 1 is known, a solution can be found modulo each prime
factor, and a solution mod p− 1 obtained using the Chinese remainder theorem
and Hensel’s lemma. If not, then Wiedemann’s algorithm may be used modulo
p− 1. Either the algorithm will work, or it will discover a factor of p− 1, and
the algorithm may be repeated on each factor.

2.3 Algebraic number theory

Throughout this paper, p will be a prime for which we wish to solve the discrete
logarithm problem in GF (p). We will represent GF (p) by Z/pZ, where elements
are identified with their least nonnegative residues.

We will choose an integer m and f(x) ∈ Z[x] of degree k such that f is
monic, irreducible over Q, and f(m) ≡ 0 (mod p). Such an f may be found by
choosing an m of suitable size, and finding the base m representation of p, say
p =

∑k
i=0 aim

i. Then f(x) =
∑k

i=0 aix
i satisfies f(m) = p, and is irreducible

by a theorem of Brillhart, Filaseta and Odlyzko [5].
We also require that p does not divide ∆f , the discriminant of f . If this

happens for a particular m, we may choose a different m, or alter f by adding
m to some ai and subtracting 1 from ai+1. The irreducibility of the new f
may be checked quickly; see [15]. Note that ∆f = (−1)k(k−1)/2R(f, f ′) may be
calculated efficiently. R(f, g) here denotes the resultant of f and g.

Let α ∈ C denote a root of f , K = Q(α), and OK denote the ring of
integers in K. If s is a prime number not dividing the index [OK : Z[α]], then
its factorization in OK is given by the following proposition (see, for example,
[25]).

Proposition 1 For a prime number s not dividing the index, suppose f factors
in GF (s)[x] as

f(x) ≡
∏

i

gi(x)
ei mod s, (4)

with each gi monic and irreducible mod s, and gi 6≡ gj for i 6= j. Then (s) =
∏

i s
ei

i , for different prime ideals si = (s, gi(α)) and N(si) = sdeg(gi).

5

In particular, since (p,∆f) = 1, p = (p, α−m) is a first-degree prime factor
of (p) in OK , and we have OK/p ∼= GF (p). We may define a homomorphism ϕ
from Z[α] to Z/pZ as in other number field sieve algorithms, by sending α to
m mod p.

We say a prime ideal of OK is bad if its norm divides the index. All other
prime ideals will be called good.

Prime numbers dividing the index can be recognized efficiently using a the-
orem of Dedekind (see [25]): Suppose that f factors mod s as in (4). Then the
prime number s divides the index if and only if there is some j for which ej ≥ 2
and

(gj mod s)

∣

∣

∣

∣

∣

(

s−1(f −
∏

i

gei

i) mod s

)

as elements of GF (s)[x].
For any y ∈ Z, call an algebraic integer in Z[α] y-smooth if it is divisible only

by good prime ideals of OK of norm at most y. We will need to find smooth
numbers of the form c+ dα, for c and d rational, coprime integers of moderate
size.

To do so, we will start by attempting to factor

|N(c+ dα)| = |(−d)kf(−c/d)| (5)

= |ck − ak−1c
k−1d+ . . .+ a1c(−d)k−1 + a0(−d)k|

≤ (k + 1) · max{|c|, |d|}k · max
i

{|ai|}.

Proposition 2 Suppose c, d ∈ Z are coprime and N(c+ dα) is relatively prime
to the index [OK : Z[α]]. Then (c+ dα) factors completely into good first-degree
prime ideals in OK .

Proof: For each rational prime s dividing |N(c + dα)|, there is a unique ideal
of norm s dividing (c+ dα). This is because if a prime ideal dividing s divides
(c+ dα), then α ≡ −c/d modulo the ideal, and since the right side is rational,
the congruence holds mod s. Thus, cs ≡ −c/d (mod s) is a root of f mod s,
and by Proposition 1 determines the unique ideal s = (s, α−cs) dividing c+dα.

The norm N(s) = |OK/s| is clearly a power of s. We have |Z[α]/(s∩Z[α])| =
s, since the representatives of classes in Z[α]/(s∩Z[α]) are just α, α+1, . . . , α+
(s− 1). Since |OK/Z[α]| is relatively prime to s, OK/Z[α] maps to the identity
under reduction mod s, so |OK/s| = s as well. Therefore the power of s dividing
(c+ dα) is the same as the power of s dividing the norm. 2

For the number fields K we are dealing with here, the discriminant will be
huge, so most operations in K will be impractical. One operation we will need
to be able to do is take a small set of units, given as products of a large number
of algebraic integers, and find a multiplicative dependency among them.

Let r1 be the number of real embeddings of K, let 2r2 be the number of
complex embeddings, and let r = r1 + r2. Let σ1, . . . , σr1

denote the real

6

embeddings, and σr1+1, σr1+1, . . . , σr, σr the others. We define a mapping l :
K → Cr1+r2 in the usual way, by

l(x) = (log |σ1(x)|, . . . , log |σr1
(x)|, 2 log |σr1+1(x)|, . . . , 2 log |σr(x)|).

This mapping sends the units in OK into a lattice L ∈ Rr, with roots of
unity mapped to the origin. The following theorem of Dobrowolski [10] shows
that other units cannot be too close to the origin.

Lemma 1 Let γ be a nonzero algebraic integer in K, and denote by |γ| the
maximal modulus of its conjugates. Then

|γ| < 1 +
log k

6k2

only if γ is a root of unity.

This implies that for any unit u that is not a root of unity, ‖ l(u) ‖ >
log(1 + ((log k)/6k2)) > 1/(10k2) for k > 1.

Theorem 3 Suppose M > 80rk2, and let u1, . . . u2r be units in OK , with
‖ l(ui) ‖ < M for i = 1, . . . , 2r. Then there is a nontrivial linear relation

2r
∑

i=1

ci · l(ui) = 0 (6)

with each ci an integer with |ci| < M2.

Proof: Consider the set S of all sums
∑2r

i=1 ci · l(ui) with 0 ≤ ci < M2. There
are formally M4r such sums, and it suffices to show that two of them are equal.

For all vectors s ∈ S, we have ‖ s ‖ < 2rM3. Therefore all s ∈ S are in
an r-dimensional sphere of radius 2rM3, and by the lemma no two members
of L are closer than 1/(10k2) to each other. Let Vr(x) denote the volume of
an r-dimensional sphere of radius x. Then the number of lattice points in the
sphere is at most

Vr(2rM
3 + 1/(20k2))

Vr(1/(20k2))
< (80rk2M3)r = M3r(80rk2)r.

But this is less than M4r, and so by the pigeonhole principle there must be
two equal vectors in S. 2

This dependence does not cancel out the units completely, since the resulting
unit

∏

uci

i could be a root of unity. If an lth root of unity is in a field of degree
k ≥ φ(l), then we have l < 6k log log k by [22]. Which root of unity it is can be
determined by calculating the arguments of each σr(ui).

If the root of unity is not one, we will look at other vectors c′ until one is

found for which
∏

u
c′i
i = 1. In practice, an lth root of unity could be eliminated

7

by raising the equation to the lth power. We will not do that here, to avoid
dealing with the possibility of losing information when l and p−1 have a common
divisor.

By the above, if M > 80rk2 and we are given 2r units u1, . . . , u2r with
‖ l(ui) ‖ < M for i = 1, . . . , 2r, then there is a nontrivial relation

∏2r
i=1 u

ci

i = 1
with each ci an integer with |ci| < 6k(log log k)M2.

Of course, existence is not enough. For the algorithm, we shall need to find
such a nontrivial relation. This can be done using an application of the Lenstra,
Lenstra, Lovász (LLL) algorithm due to Babai [2]. For a lattice L, let λ(L) be
the length of the shortest nonzero vector in L.

Theorem 4 Let b1, . . . , bn be vectors in Zn with Euclidean length less than N ,
and let L denote the lattice generated by b1, . . . , bn. We can find a vector v ∈ L
such that

‖ v ‖ ≤ (3/
√

2)nλ(L)

in time O
(

n5+ǫ(logN)2+ǫ
)

, for any ǫ > 0.

This algorithm will be used to find the dependency of Theorem 3. The time
estimate is the same as for the LLL algorithm [15], using fast multiplication.

Theorem 5 Suppose M > 80rk2, and let u1, . . . u2r be units in OK , with
‖ l(ui) ‖ < M for i = 1, . . . , 2r. A nontrivial relation

∏2r
i=1 u

ci

i = 1 can be
found in time O(r5+ǫ(logM)2+ǫ), for any ǫ > 0.

Proof: Let lm(x) denote l(x) with each coordinate li replaced by ⌊2mli⌋, and
let Lm be the lattice generated by lm(u1), . . . , lm(u2r).

For c = (c1, c2, . . . , c2r) as in Theorem 3,

‖
2r
∑

i=1

ci · lm(ui) ‖ = ‖
2r
∑

i=1

ci · (2ml(ui) + ǫi) ‖ = ‖ 0 +

2r
∑

i=1

ci · ǫi ‖ < 2r3/2M2,

where each ǫi is a vector with all coordinates less than one in absolute value.
We will show that such vectors c are short vectors in Lm, and that they are suf-
ficiently shorter than other vectors to guarantee that the algorithm of Theorem
4 will find one.

There is a (highly unlikely) possibility that
∑2r

i=1 ci ·lm(ui) = 0 for all choices
of c1, . . . c2r in Theorem 3, so that the shortest nonzero vector could be longer
than 2r3/2M2. If the algorithm ever failed because of this, we could repeat
it with a lattice L′

m where one coordinate lj is replaced by ⌈2mlj⌉ instead of
⌊2mlj⌋. By the Gelfond-Schneider Theorem (see, for example, [3]) the lattices
are different, since 2mlj cannot be an integer. Therefore no vector c which is
not a root of unity with cj 6= 0 could be zero in both Lm and L′

m, and at least
one lattice (say Lm) has λ(Lm) < 2r3/2M2.

Any vector
∑2r

i=1 ci · lm(ui) not corresponding to a relation of the form (6)
will have one coordinate at least

⌊

2m/10k2
⌋

in absolute value, by Lemma 1.

8

Taking 2m > 20k2r25rM2, this implies that the vector has length greater than
2r25rM2.

By Theorem 4, we can find a vector in Lm of length at most (3/
√

2)2rλ(Lm).
But 2r25rM2 > (3/

√
2)2rλ(Lm), so the vector found must correspond to a

relation (6). 2

3 Discrete logarithms in GF (p)

The algorithm consists of two main parts. The first is finding the discrete log-
arithms of a factor base of small rational primes, which only has to be done
once for a given p. The second actually finds the logarithm of an individual
b ∈ GF (p), by finding the logs of a number of “medium-sized” primes, and
combining these to find the log of b. In addition, for each number field used
(one for the precomputation, and several for the individual logarithm calcula-
tions), the good degree one prime ideals of small norm in that field need to be
determined, using the method discussed in Section 2.

We will assume that a, the base for the discrete logarithm, is B-smooth,
where B is a bound for the size of primes in the factor base. If a is not smooth,
then we may choose a random number that is smooth over the factor base, call
it a′, and use it as the base for logarithms instead of a. Then find loga′ a, and
use the identity:

loga b ≡ loga′ b/ loga′ a (mod p− 1).

If a′ is not a generator for GF (p)∗, then loga′ a and loga′ b may not ex-
ist. If this happens, we just choose another value of a′ until we find one for
which loga′ a exists. Alternatively, we could factor p− 1 using the number field
sieve factoring algorithm, and then test if an a′ is a generator by checking that
(a′)(p−1)/q 6≡ 1 (mod p) for each prime q dividing p− 1. There is no guarantee
that a small generator exists, but Shoup has shown [23] that the Extended Rie-
mann Hypothesis implies that there is a constant c such that for all primes p,
GF (p)∗ has a generator less than c ω(p − 1)4(log(ω(p − 1)) + 1)4 log2 p. Here
ω(n) is the number of distinct prime factors of n.

The reason for requiring a to be smooth is to have at least one inhomogeneous
relation for the logs of the factor base, using the equation:

loga a = 1 ≡
∑

qt‖a

t loga q (mod p− 1). (7)

3.1 Precomputation

Let p be a prime and a be a primitive element of GF (p). As described in Section
2.3, choose an integer m and an irreducible monic polynomial f(x) ∈ Z[x] such
that (p,∆f) = 1 and f(m) ≡ 0 (mod p). Let α ∈ C denote a root of f ,
K = Q(α), and OK denote the ring of integers in K. Let p = (p, α−m), so we
have OK/p ∼= GF (p).

9

The factor base B will consist of two parts: BQ will be rational primes ≤ B,
and BK will be good prime ideals in OK of degree one and norm ≤ B. Let B′

denote the subset of BQ consisting of the prime factors of a.
For the precomputation stage we solve for the logarithms of the rational

primes. We will do this by sieving through pairs of small integers c and d. A
“hit” will be a coprime pair c, d for which c+ dm and c+ dα are both smooth
over B. These can be searched for efficiently by sieving c+ dm and N(c+ dα).
Suppose that we find a c and d for which both are smooth, say

c+ dm =
∏

s prime,s≤B

sws(c,d), (8)

and
|N(c+ dα)| =

∏

s prime,s≤B

svs(c,d), (9)

for vs, ws ∈ Z≥0. By Proposition 2, for each s in (9) with vs > 0 there is a
unique ideal s in BK lying over s and dividing c+ dα. Let vs(c, d) = vs(c, d) for
this ideal, and be zero for other ideals in BK of norm s. Thus we have

c+ dm =
∏

s∈BQ

sws(c,d) (10)

and
(c+ dα) =

∏

s∈BK

s
vs(c,d) (11)

In the Gaussian integers method, where K is a complex quadratic field with
class number one, the factorization into ideals in (11) can be rewritten as a
product of algebraic integers in OK and one of a few (at most six) units. Then
the equations can be related using ϕ(c+dα) ≡ c+dm (mod p), and from enough
of these equations a solution can be determined which gives the logs of every
element of B. A similar technique will be used for special p in Section 5. For
the number fields K we are dealing with here we need to use a different method.

We continue sieving through pairs (c, d) until we have collected more than
|B| equations of the form (10) and (11). Then we form a matrix with the ws’s
and vs’s for each equation as its rows, and apply Algorithm M to the submatrix
of columns corresponding to elements of B−B′. In this way cancel out all those
primes to find equations involving only primes in B′ (the resulting equations
could be trivial, but we will use the heuristic assumption that they will behave
as if they were random equations). We then have a set S of pairs (c, d) and
integers x(c, d) for (c, d) ∈ S such that

∏

(c,d)∈S

(c+ dm)x(c,d)

is divisible only by primes in B′, and
∏

(c,d)∈S

(c+ dα)x(c,d) = U, (12)

10

where U is a unit in OK .
After gathering 2r equations of the form (12), we may find a combination of

these which cancels all the units, by Theorem 5. This results in an equation of
the form:

∏

c,d

(c+ dα)y(c,d) = 1, (13)

and so
∏

c,d

(c+ dm)y(c,d) ≡
∏

c,d

ϕ(c+ dα)y(c,d) ≡ 1 (mod p). (14)

Using the factorizations in (10), this gives

∏

s∈B′

szs ≡ 1 (mod p), (15)

where zs =
∑

c,dws(c, d)y(c, d).
Taking logs, we have

∑

s∈B′

zs loga s ≡ 0 (mod p− 1). (16)

Once we have more than |B′| such equations, we can attempt to solve these
homogeneous equations together with (7) and obtain the logs of every prime in
B′, using Gaussian elimination modulo p−1. If the matrix does not determine a
unique solution, we may collect more equations until it does. Since |B′| < log p,
the fact that we need to have |B′| runs of Algorithm M will not affect the
complexity analysis.

3.2 Finding Individual Logarithms

To compute the logarithm of b, we first convert the problem into finding log-
arithms of “medium-sized” primes. This is done by choosing random integers
l ∈ [1, p− 1] until we find one for which

alb ≡ q1q2 . . . qt (mod p) (17)

where each of the qi are moderately sized (say ≤ p1/k). Then by finding the
discrete logarithms of each qi we will obtain the discrete logarithm of b.

For each i, take mi = qihi, where hi is a number smooth over B chosen so
that mi is close to p1/k. Let fi(x) be a monic polynomial of degree k such that
fi(mi) ≡ 0 (mod p), and define

fi,j(x) = fi(x) + j(mi − x).

Then fi,j(mi) ≡ 0 (mod p), and if fi,j(x) is irreducible over Q and αi,j is
a root of fi,j(x), then in Q(αi,j), |N(αi,j)| = |fi,j(0)|. We sieve through values
of j to find ones for which fi,j(0) is B-smooth, and continue until we find one

11

with fi,j(x) irreducible, and (pfi,j(0),∆fi,j
) = 1. We will use this polynomial

to find the logarithm of qi.
Once a suitable value of j has been found, the factorization of αi (= αi,j) in

Ki = Q(αi) gives us the equations:

mi = qihi ≡ ϕ(αi) (mod p) (18)

and
(αi) =

∏

s∈BKi

s
us. (19)

As in the precomputation stage, we will sieve through small c and d until
we collect enough equations of the form (10) and (11) to cancel factors not in
B′, and obtain:

qihi

∏

c,d

(c+ dmi)
t(c,d) ≡ ϕ(αi)

∏

c,d

ϕ(c+ dαi)
t(c,d) ≡ 1 (mod p), (20)

where the left product is divisible only by qi and primes in B′. Note that we
only need one such equation, since the logs of primes in B′ are known from the
precomputation.

Thus we have
qi ≡

∏

s∈B′

sz′

s (mod p),

and so
loga qi ≡

∑

s∈B′

z′s loga s (mod p− 1). (21)

We do this procedure once for each qi, and combine their logarithms to
find loga b. The sieving and cancellation in this stage is the same as in the
precomputation. The only difference is that we need to keep (18) and (19),
and find other equations with rank sufficient to cancel out the factors in those
equations and the units that arise. It is a reasonable heuristic assumption that
the equations will have full rank, and most discrete logarithm algorithms involve
a similar assumption. An exception is the rigorous algorithm of Pomerance in
[20], but we have no version of his Lemma 4.1 which works in this setting.

4 Runtime Analysis

We will choose two parameters to optimize the performance: the size of B will
be Lp[1/3; δ], and the size of m will be Lp[2/3; γ], with δ and γ to be chosen
later.

For the precomputation, take

k =

⌈

1

γ

(

log p

log log p

)1/3
⌉

.

12

Then choose m ∈ Z less than p1/k and f irreducible of degree k as described
earlier. Let α be a root of f , and K = Q(α).

We will search through pairs of integers c, d which are relatively prime and
at most Lp[1/3;λ] in absolute value. There are thus Lp[1/3, 2λ] pairs. We have

|c+ dm| ≤ Lp[2/3; γ],

and
|N(c+ dα)| ≤ Lp[2/3; γ + λ/γ],

by (6).
Using the heuristic assumptions of Section 2.1, we expect to get enough hits

to solve for the logs of B′ after

Lp[1/3;
γ

3δ
+
γ + λ/γ

3δ
+ δ]

trials. Letting this equal Lp[1/3; 2λ], we get

λ =
2γ2 + 3δ2γ

6δγ − 1
. (22)

The time necessary to sieve through all these values is Lp[1/3; 2λ]. Each use
of Algorithm M to solve the matrix equations takes time Lp[1/3; 3δ], taking T =
Lp[1/3; δ] and E = O(log p). To cancel the units as described in Section 2.3 takes
time Lp[1/3; 2δ]. This follows from Theorem 5, taking M = exp(Lp[1/3; δ]).

This is done |B′| < log p times, so the total time is still Lp[1/3; 3δ]. Alto-
gether, the precomputation takes time Lp[1/3; 3δ].

To calculate the discrete log of a particular b ∈ GF (p), we choose a random
l ∈ [1, p − 1] and see if alb mod p is Lp[2/3; γ]-smooth. Assuming Conjecture
2, the ECM can detect such smooth numbers with probability 1 − o(1) in time
Lp[1/3; 2

√

γ/3]. If no factorization is found after that amount of time, another
value of l can be tried. We expect to find an l for which al mod p is smooth
after Lp[1/3; 1/(3γ)] trials, by Theorem 1.

Once such a value has been found, we have alb ≡ q1q2 . . . qt (mod p), and it
suffices to find the discrete logarithm of each qi.

Then we choose mi = qihi of size Lp[2/3; γ] for each qi, and find an irre-
ducible monic polynomial f of degree k for which f(mi) ≡ 0 (mod p) and fi(0)
is B-smooth. The constant term of f is Lp[2/3; γ], so finding a smooth value
should take time Lp[1/3; γ/(3δ)].

The next step is to collect equations as in the precomputation. The pa-
rameters are the same, and so the time will be the same, unlike most discrete
logarithm algorithms, for which the precomputation takes more time than find-
ing individual logarithms.

The total time is Lp[1/3;M], where

M = max

{

2λ, 3δ,
1

3γ
+ 2

√

γ

3
,
γ

3δ

}

.

13

By choosing

γ =

(

3

8

)1/3

,

δ = 3−1/3,

λ =

(

9

8

)1/3

,

we note that (22) is satisfied and we achieve an optimal time of Lp[1/3; 32/3].

5 Discrete logs for special p

As with the number field sieve factoring algorithm, it is possible to modify the
discrete logarithm algorithm for numbers of a special form. The method we
present here is a generalization of the Gaussian integer method to higher-degree
fields. While asymptotically slower than the method of Section 3, it avoids the
use of Algorithm M, and so is more practical for numbers of a reasonable size.

In [18], McCurley offers $100 for breaking a Diffie-Hellman scheme (which is
no harder than, and may be equivalent to, finding discrete logarithms) with the
prime p = 2 · 739 · q + 1, where q = (7149 − 1)/6. For this number the scheme
given below would be faster than the method of Section 3, although since p has
128 digits, even this method would require an exorbitant amount of computer
time.

Let

k =

⌈

1

γ

(

log p

log log p

)1/5
⌉

for some γ > 0 to be chosen later. The special method will apply to primes p
for which there exists an irreducible monic polynomial f of degree k and integer
m near p1/k for which f(m) ≡ 0 (mod p), and all the coefficients of f are small.
“Small” is a flexible term, but can be taken to mean that the resulting field
K = Q(α) for α a root of f has small enough discriminant that the class group
and unit group can be dealt with.

For instance, if re − s ≡ 0 (mod p), for a small positive integer r and a
nonzero integer s of small absolute value, let l be the smallest integer for which
kl > e. Then rkl ≡ srkl−e (mod p), and so if we pick m = rl and f(x) =
xk − srkl−e, we have f(m) ≡ 0 (mod p).

For the number q above, we could take k = 6, m = 725, and f(x) = x6 − 7.
The number p is more difficult; with the same k and m we would need to take
f(x) = 739x6 − 5152. Using a non-monic polynomial would not cause major
difficulties, but the larger coefficients would increase the difficulty of operations
in OK and reduce the hit rate for the sieving.

Let α be a root of f , and K = Q(α). For simplicity, we will assume that
OK = Z[α] is a unique factorization domain.

Choose B = Lp[2/5; δ], where δ > 0 is another parameter to be chosen later.
Our factor base B will consist of rational primes < B (BQ), first-degree primes

14

(algebraic integers, not ideals) in OK with norm less than B, and a fundamental
set of units in OK (BK). We will be dealing explicitly with the ideals and the
units in K, and so it is necessary to calculate generators for the unit group and
the ideals in BK . This may be done as in [16], by searching elements of the

form
∑k−1

i=0 aiα
i, with ai’s of small absolute value, for ones of small norm, and

combining these to obtain the necessary units and generators of the ideals.
The base for logarithms for algebraic numbers is not important; it may be

a small prime which generates (OK/p)
∗, for p a prime ideal of norm p, or an

algebraic number ρ with a ≡ ϕ(ρ) (mod p).
The precomputation step will determine the discrete logs of the whole factor

base, not just a subset of the rational part. As before, sieve through c and d
less than Lp[2/5;λ], looking for values with c+dm and N(c+dα) both smooth.
We have

c+ dm = Lp[4/5; γ],

and
N(c+ dα) = Lp[3/5;λ/γ] = Lp[4/5; 0].

Therefore the probability of both being B-smooth is Lp[2/5;−2γ/(5δ)]. To get
Lp[2/5; δ] hits will take expected time

Lp[2/5; 2γ/(5δ) + δ],

with λ = γ/(5δ) + δ/2.
Each hit gives us an equation involving logarithms of the factor base. Once

we have more than |B| = Lp[2/5; δ] hits, we solve the resulting matrix equation
over Z/(p−1)Z using Wiedemann’s algorithm in time Lp[2/5; 2δ]. Heuristically,
we expect there to be a unique solution, which will give the logarithms of the
factor base.

To find an individual logarithm, we again reduce the problem to finding the
logs of medium-sized primes qi by looking for asb (mod p) smooth. Now it will
be advantageous to take the qi’s much smaller than m, say of size Lp[3/5; θ].
Assuming Conjecture 2, if asb is this smooth, we expect the ECM to factor it
with probability 1−o(1) in time Lp[3/10;

√

6θ/5]. We expect a smooth number
to turn up in about Lp[2/5; 2/(5θ)] trials, so the total time is Lp[2/5; 2/(5θ)].

For each qi, we will sieve c and d for which qi|(c + dm), say fixing d and
taking c = c0 + eqi, to find one value for which (c+ dm)/qi and N(c+ dα) are
both B-smooth. Once this happens we are done, since from the precomputation
we know the logs of the whole factor base.

We cannot change m as in the general method, since this would result in a
field with large discriminant. Therefore, at least one of c and d must be about as
big as qi, so (c+dm)/qi = Lp[4/5; γ], and N(c+dα) = Lp[4/5; θ/γ]. (Note that
for the general number field sieve method, N(c + dα) would be Lp[1; 1], which
is why multiple fields were needed.) The expected time to find both B-smooth
is therefore

Lp

[

2/5;
2(γ + θ/γ)

5δ

]

.

15

Thus the time for the precomputation is Lp[2/5;µ], where

µ = max

{

2γ

5δ
+ δ , 2δ

}

, (23)

and the time for finding individual logarithms is Lp[2/5; ν], where

ν = max

{

2

5θ
,

2(γ + θ/γ)

5δ

}

. (24)

Since θ does not occur in the precomputation, we may choose it to make the
two terms in (24) equal:

θ =
−γ2 +

√

γ4 + 4δγ

2
.

The choices for γ and δ depend on how time is to be divided between the two
stages. Enlarging δ reduces the time needed to find individual logarithms, but
at the cost of increasing the precomputation time. If the times are to be equal
(say if only one logarithm is desired for a given p), then the optimal values are:

γ = 10−1/5,

δ =

(

4

125

)1/5

,

giving a time of Lp[2/5;µ] = Lp[2/5; ν], where

µ = ν =

(

128

125

)1/5

≈ 1.00475.

If many instances are to be done for one p, more time could be spent on the
precomputation. For µ ≥ (128/125)1/5, if we spend Lp[2/5;µ] time on the
precomputation, each logarithm can be found in time

Lp

[

2/5;

(

128

125µ2

)1/3
]

.

For any c ≥ 1, the Gaussian integer method can find logarithms in time
Lp[1/2; 1/(2c)] if Lp[1/2; c] is spent on the precomputation. Where the above
method becomes faster than the Gaussian integer method depends largely on
the o(1) terms and the choice of f , but for a good f it is well under 100 digits.
More research is needed to say for which size primes and polynomials the special
number field sieve algorithm is a practical improvement.

The general number field sieve algorithm is definitely not practical for any
reasonable numbers. The crossover point for Lp[1/2; 1] and Lp[1/3; 32/3] (the
times for the Gaussian integer method and the general number field sieve) is
218 digits. The crossover point for Lp[2/5; 1.00475] and Lp[1/3; 32/3] (the times
for the special and general number field sieves) is above 320,000 digits.

16

If OK has class number h > 1, then we need to cancel the nonprincipal ideals
that occur in (11). If we have calculated h, then the algorithm may proceed as
in Section 3, with Algorithm M replaced by Wiedemann’s algorithm modulo h,
to get an equation involving only principal ideals.

Finally, it should be noted that the special number field sieve can also be
applied to primes which are values of homogeneous forms in two variables, as
well as polynomials. Let f be a polynomial of degree k, and X and Y be integers
near p1/k, such that

Y kf(X/Y) = Xk + ak−1X
k−1Y + . . .+ a0Y

k ≡ 0 (mod p).

Then the above method may still be used, with the homomorphism ϕ(c+dα) =
c+dX/Y . Then the sieving phase searches for values of c and d for which c+dα
and cY + dX are both smooth. The analysis is the same as given above.

6 Recent Developments

The general number field sieve algorithm is still impractical for large numbers,
largely because of the need for Gaussian elimination over Q. Methods to avoid
this problem have been suggested by Adleman [1] for number field sieve factor-
ing and by Schirokauer for discrete logarithms over GF (p). Coppersmith very
recently has suggested using multiple fields to factor n in time Ln[1/3; c] with
c ≈ 1.902, an improvement over c ≈ 2.08 for the original algorithm of Buhler,
Lenstra and Pomerance, and c ≈ 1.92 for the methods of Lenstra and Adle-
man. The resulting algorithms, while faster, are still impractical for numbers
within reach of present-day computers. Use of the number field sieve in number-
theoretic algorithms is a rapidly-developing area. These developments, and the
improvements of the constants above, are likely to continue.

The practicality of the special number field sieve is of interest for discrete
log-based cryptosystems. By choosing a prime p with a good f and m (as in
Section 5) as the base for such a system, its security would be weakened. A
person with knowledge of f might be able to use it as a “trapdoor” to break
the system. More study is needed to say how much of an advantage this would
actually be.

Acknowledgments

The author would like to thank Carl Pomerance for allowing the presentation
of his Algorithm M here, and suggesting several improvements in the design
and presentation of the number field sieve discrete log algorithm. Thanks also
to Andrew Odlyzko for several email discussions about discrete logarithms, and
Hendrik Lenstra for helpful comments.

17

References

[1] L.M. Adleman, Factoring numbers using singular integers, Proc. 23rd ACM
Symposium on Theory of Computing, 1991, pp. 64-71.

[2] L. Babai, On Lovász’s lattice reduction and the nearest lattice point prob-
lem, in 2nd Annual Symposium on the Theoretical Aspects of Computing,
K. Mehlhorn, ed., Springer, Berlin, pp. 13-20.

[3] A. Baker, Transcendental Number Theory, Cambridge University Press,
Cambridge, 1975.

[4] E.R. Berlekamp, Factoring polynomials over large finite fields, Math.
Comp., 24 (1970), pp. 713-735.

[5] J. Brillhart, M. Filaseta and A. Odlyzko, On an irreducibility theorem of
A. Cohn, Can. J. Math, 33 (1981), pp. 1055-1059.

[6] J. Buhler, H.W. Lenstra, Jr. and C. Pomerance, Factoring integers with
the number field sieve, preprint.

[7] E.R. Canfield, P. Erdős, and C. Pomerance, On a problem of Oppenheim
concerning ‘Factorisatio Numerorum’, J. Number Theory, 17 (1983), pp.
1-28.

[8] D. Coppersmith, Modifications to the number field sieve, preprint.

[9] D. Coppersmith, A.M. Odlyzko and R. Schroeppel, Discrete logarithms in
GF(p), Algorithmica, 1 (1986), pp. 1-15.

[10] E. Dobrowolski, On the maximal modulus of conjugates of an algebraic
integer, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 26 (1978),
pp. 291-292.

[11] J.B. Friedlander and J.C. Lagarias, On the distribution in short intervals
of integers having no large prime factors, J. Number Theory, 25 (1987),
pp. 249-273.

[12] E. Kaltofen and B.D. Saunders, On Wiedemann’s method for solving sparse
linear systems, preprint, 1991.

[13] B. LaMacchia and A.M. Odlyzko, Computation of discrete logarithms in
prime fields, Designs, Codes and Cryptography, 1 (1991), pp. 47-62.

[14] H.W. Lenstra, Jr., Factoring integers with elliptic curves, Ann. of Math.,
126 (1987), pp. 649-673.

[15] A.K. Lenstra, H.W. Lenstra, Jr., and L. Lovász, Factoring polynomials
with rational coefficients, Math. Ann. 261 (1982), pp. 515-534.

18

[16] A.K. Lenstra, H.W. Lenstra, Jr., M.S. Manasse and J.M. Pollard, The
number field sieve, Proc. 22nd ACM Symposium on Theory of Computing
(1990) 564-572.

[17] H.W. Lenstra, Jr. and C. Pomerance, A rigorous time bound for factoring
integers, preprint.

[18] K. McCurley, The discrete logarithm problem, Cryptology and Computa-
tional Number Theory, Proceedings of Symposia in Applied Mathematics,
American Mathematical Society, 1990.

[19] A.M. Odlyzko, Discrete logarithms in finite fields and their cryptographic
significance, Proc. Eurocrypt ’84, pp. 224-314.

[20] C. Pomerance, Fast, rigorous factorization and discrete logarithm algo-
rithms, in Discrete Algorithms and Complexity, D.S. Johnson, et al, eds.,
Academic Press, Orlando, 1987, pp. 119-143.

[21] C. Pomerance, personal communication.

[22] J.B. Rosser and L. Schoenfeld, Approximate formulas for some functions
of prime numbers, Illinois J. of Math., 6 (1962), pp. 64-94.

[23] V. Shoup, Searching for primitive roots in finite fields, Math. Comp., 58
(1992), pp. 369-380.

[24] D.H. Wiedemann, Solving sparse linear equations over finite fields, IEEE
Trans. Info. Theory, 32 (1986), pp. 54-62.

[25] H. Zantema, Class numbers and units, in Computational Methods in Num-
ber Theory, Vol. II, H.W. Lenstra, Jr. and R. Tijdeman, eds., Mathematisch
Centrum, Amsterdam, 1982, pp. 213-234.

19

