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Abstract. Call a set of integers {b1, b2, . . . , bk} admissible if for any
prime p, at least one congruence class modulo p does not contain any of
the bi. Let ρ∗(x) be the size of the largest admissible set in [1, x].
The Prime k-tuples Conjecture states that any for any admissible set,
there are infinitely many n such that n+b1, n+b2, . . . n+bk are simultane-
ously prime. In 1974, Hensley and Richards [3] showed that ρ∗(x) > π(x)
for x sufficiently large, which shows that the Prime k-tuples Conjecture
is inconsistent with a conjecture of Hardy and Littlewood that for all
integers x, y ≥ 2,

π(x + y) ≤ π(x) + π(y).

In this paper we examine the behavior of ρ∗(x), in particular, the point
at which ρ∗(x) first exceeds π(x), and its asymptotic growth.

1 Introduction

The Prime k-tuples Conjecture states that for any set {b1, b2, . . . , bk} of integers
which do not cover all congruence classes modulo any prime, there are infinitely
many integers n such that n + b1, n + b2, . . . , n + bk are all prime. Call such a
set admissible. Let ρ∗(x) be the size of the largest admissible set in [1, x]. It is
known that

π(x) + (log 2 − o(1))
x

log2 x
≤ ρ∗(x) ≤ 2π(x). (1)

The lower bound is due to Hensley and Richards [3], and the upper bound
was shown by Montgomery and Vaughn [6], using the large sieve.

The main interest in ρ∗(x) is that the Hensley and Richards result shows that
the widely believed Prime k-tuples Conjecture is inconsistent with a conjecture
of Hardy and Littlewood that for all integers x, y ≥ 2,

π(x + y) ≤ π(x) + π(y). (2)

Let ρ(x) = lim supy→∞ π(x + y) − π(y). Then (2) is equivalent to ρ(x) ≤ π(x)
for x ≥ 2. The Prime k-tuples Conjecture implies ρ∗(x) = ρ(x). By finding
dense admissible sets, Hensley and Richards [3] showed that the Prime k-tuples
Conjecture implies sets of primes in short intervals (y, x+y] which are denser than



the π(x) primes in [1, x]. They construct their sets by sieving out by congruence
classes a1 mod 2, a2 mod 3, . . . , trying to leave as many survivors as possible.
When they have sieved by all primes up to x, the set of survivors is clearly
admissible.

Hensley and Richards showed that ρ∗(x) > π(x) for x = 20, 000. Unfortu-
nately, the smallest prime k-tuple will typically be of size about kk, so actually
finding such a k-tuple seems hopeless. Computations by Selfridge showed that
ρ∗(x) < π(x) for x ≤ 500. Jarvis [4] computed ρ∗(x) for x ≤ 1050, and showed
that ρ∗(x) < π(x) for x ≤ 1120. In Section 3 we describe extending those
computations, in particular computing ρ∗(x) for x < 1631, and finding that
ρ∗(1417) = π(1417).

Hensley and Richards showed that one particular sieve, the midpoint sieve,
resulted in an admissible set giving the lower bound in (1). Another sieve, sug-
gested by Schinzel, gives a better bound, but depends on a conjecture concerning
how far the sieve has to go before the set is admissible. We will discuss these
and other sieves in the next section.

The question of extreme behaviors of sieving is of independent interest. Here
we are concerned with saving sieves, which leave as many survivors as possible.
The problem of killing sieves, where we want to eliminate all of [1, x] using as
few primes as possible, is related to Jacobstahl’s function.

The Jacobsthal function j(n) is the maximal gap between consecutive in-
tegers relatively prime to n. Maier and Pomerance [5] define j′(n) to be the
largest x for which a sieve by the factors of n eliminate all integers in [1, x] .
Then j′(n) = j(n) − 1 by the Chinese Remainder Theorem. Let

P (x) =
∏

p≤x

p.

Then j′(P (x)) is the largest interval which can be completely sieved out by
primes up to x. Maier and Pomerance show

j′(P (x)) ≥ (c0e
γ + o(1))x log x log log log x(log log x)−2, (3)

where c0 = 1.312 . . . is the solution of

4/c0 − e−4/c0 = 3.

Pintz [7] recently improved the constant from c0 to 2.
To rephrase this in a way more convenient for our purposes, let T (x) be the

smallest number t such that there is a sieve by primes up to t which sieves out
[1, x] . Then from (3) we have

T (x) ≤ O(x(log log x)2/ log x log log log x)

Maier and Pomerance conjecture that j′(P (x)) = x(log x)2+o(1). This would
imply

T (x) ≈ x/(log x)2+o(1). (4)
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The killing sieve that Maier and Pomerance use to establish (3) is the same
as the one suggested by Schinzel for a saving sieve. In both cases we sieve by
1 mod p for small primes, 0 mod p for “medium-sized” primes, and optimally
modulo large primes. This strategy may not result in the best possible killing or
saving sieve, but it does yield a set which can be analyzed using standard sieve
methods.

2 Sieve Strategies

2.1 The Sieve of Eratosthenes

The sieve of Eratothenes is an obvious starting point. Unchanged, it is not a
good saving sieve, since it covers all points in [1, x] . However, it is easy to turn
it into a saving sieve by stopping the sieve when p > x/2. For all larger primes
the congruence classes containing [x/2] and [x/2] + 1 will each contain only a
single point in [1, x] , and one of these integers had to be eliminated by the
sieve modulo two. The survivors of the sieve are the primes greater than x/2.
Changing over to a greedy strategy earlier will do better, but will clearly be
worse than π(x) if the sieve of Eratothenes is done up to

√
x.

We can stop the sieve significantly earlier than x/2. It is obvious that once p
is greater than the number of survivors, some congruence class will be completely
covered, and the sieve can be halted. Let t(z) be the inverse function of T (x),
i.e. the largest x such that [1, x] can be sieved out by primes p < z. Hensley and
Richards ([3], Lemma 5*) show

Lemma 1. There is an x0 such that for x > x0, the survivors of any sieve by

primes up to x/t(log x/2) are admissible.

Hensley and Richards only needed T (x) = o(x), to show that their sieve
could stop at x/N log x for any N > 0. If (4) is true, then a sieve by primes up
to x/ log x(log log x)2+o(1) will be admissible. In Section 2.4 we give a heuristic
argument that the survivors of almost all sieves by primes up to cx/ log2 x will
be admissible for any c > 2.

2.2 Random and Greedy Sieves

A random sieve is easy to analyze. Sieving by a random congruence modulo p will
on average eliminate 1/p of the remaining integers. Thus the expected number
of survivors is

x
∏

p<x

(1 − 1/p) ≈ e−γ x

log x
≈ 0.5614

x

log x
.

by Mertens’ Theorem.

One might hope that a greedy algorithm would do better. Instead of choos-
ing a congruence class at random, choose the best possible for each p. For small
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primes, say p < log x, the distribution of survivors over congruence classes mod-
ulo p is very flat, by standard sieve arguments. For larger primes it becomes less
regular, so larger improvements over the random sieve can be obtained.

Let g(x) be the size of the admissible set in [1, x] generated by the greedy
algorithm. In case of ties, we pick the first congruence class which eliminates
the fewest possible survivors (other choices do not affect the behavior much).
Figure 1 shows g(x) − π(x) for x < 181, 000. The first x where g(x) equals π(x)
is g(11046) = 1337, and g(x) is greater than π(x) at g(11916) = 14294. It seems
likely that

lim sup(g(x) − π(x)) → ∞,

and
lim inf(g(x) − π(x)) → −∞.
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Fig. 1. g(x)− π(x)

2.3 The Midpoint Sieve

Hensley and Richards use the fact that primes are denser in [−x/2, x/2] than
in [1, x] . Sieving [−x/2, x/2] by primes up to x/N log x for any N > 0 and x
sufficiently large, the number of survivors is

2π(x/2) − 2π(x/N log x) ≈ π(x) + (log 2 − ǫ(N))(x/ log2 x)

by the sharp form of the Prime Number Theorem. The resulting set of survivors
will be admissible by Lemma 1.
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2.4 Schinzel’s Sieve

It is hard to find other sieve strategies that can be analyzed. One notable one is
used in analyses of Jacobstahl’s function and prime gaps as well. In this context,
it was suggested by Schinzel (see [3]).

Choose y < z < x. The sieve is just a variation on the sieve of Eratothenes:
sieve by 1 mod p for p ≤ y, and 0 mod p for y < p ≤ z. Hensley and Richards
show that for y fixed, m = π(y), and z = x/N log x(log log x)m, the number of
survivors will be

π(x) + (1 + o(1))
x

log2 x

∑

r<y

r log r

(r − 1)2
.

By taking y large, the difference between this and π(x) may be made larger
than cx/ log2 x for any constant c. The problem is that we do not know if the
resulting set is admissible. Hensley and Richards conjecture that it is, and show
that admissibility is implied by the stronger conjecture:

T (x) = o(x/ logm x).

However, by (4) this is unlikely for m ≥ 2. Thus, it is still possible that ρ∗(x)
and π(x) only differ by O(x/ log2 x). However, we give a heuristic argument that
the difference is at least slightly greater.

Conjecture 1.

ρ∗(x) ≥ π(x) + (1 + o(1))x log log log x/ log2 x.

Heuristic Argument. We will follow the argument in [3]. As before, we will sieve
by 1 mod p for p ≤ y, and 0 mod p for p ≤ z. Here we take y = log log x, and
z = cx/ log2 x, for any c > 2.

Call an integer y-smooth if all its prime factors are at most y. The survivors
will be the union R(1) ∪ R(2), where R(1) is the set of integers in (0, x] of the
form mp, where p > z is prime, m is y-smooth and mp − 1 is relatively prime
to P (y), and R(2) is the set of y-smooth integers in (0, x]. We will ignore the
smaller set R(2), which has size O(xǫ) for any ǫ > 0, and show that R(1) has the
conjectured cardinality.

We have
R(1) =

⋃

m≤x/z

′
Rm,

where
Rm = {mp : z < p ≤ x/m, (mp − 1, P (y)) = 1},

and the prime indicates that the union (and sums below) are over y-smooth
integers.

By the Siegel-Walfisz Theorem on primes in arithmetic progressions,

|Rm| = π
( x

m

)

∏

r≤y

r |6 m

(

r − 2

r − 1

)

(

1 + O(log−A x)
)
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for any fixed A > 0. Since

π(x/m) = π(x)
(

1/m + log m/(m logx) + O(log−2 x)
)

,

we have

∑

m≤x/z

′
|Rm| = π(x)

∑

m≤x/z

′ ∏

r≤y

r |6 m

(

r − 2

r − 1

)(

1

m
+

log m

m logx
+ O

(

1

log2 x

))

survivors. As in (**) of [3], using estimates for the number of y-smooth numbers
less than x/z = O(log2 x) (see [2]), this becomes

π(x)





























∞
∑

m=1

′
∏

r≤y

r |6 m

(

r − 2

r − 1

)(

1

m
+

log m

m log x

)















+ o

(

1

log x

)















= π(x)





∏

r≤y

(

r − 2

r − 1
+

∞
∑

a=1

1

ra
+

∞
∑

a=1

log ra

ra log x

)

+ o

(

1

log x

)





= π(x)





∏

r≤y

(

1 +
1

log x

∞
∑

a=1

a log r

ra

)

+ o

(

1

log x

)





= π(x)



1 +
1

log x

∑

r≤y

r log r

(r − 1)2
+ o

(

1

log x

)





= π(x)

[

1 +
log y

log x
(1 + o(1))

]

= π(x) + (1 + o(1))
x log log log x

log2 x
.

The problem is that we cannot show that this set is admissible. A heuristic
argument, assuming that the survivors are distributed more or less randomly
among congruence classes modulo larger primes, indicates that it should be. Each
prime p > z has p > cx/ log2 x congruence classes, and s < 2x/ logx survivors
(by [6]) are being put in them. If survivors were randomly distributed, then the
probability that some congruence class is empty is e−λ, where λ = pe−s/p >
x(c−2)/c−ǫ (see, for example, Section IV.2 of [1]). For c > 2, the probability that
all congruence classes are covered for any prime p > z is o(1).

The experimental data is not very helpful (see Figure 2), since asymptotics
do not take over until x is quite large. The crossover point for this sieve with
y = 2 is 904,036, and with larger y much larger.
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Fig. 2. Difference between y = 2 sieve and π(x)

3 Computing ρ
∗(x) Efficiently

The only way to compute ρ∗(x) seems to be to exhaust over residues modulo
2, 3, . . . , looking for sets of residues with a large number of survivors. It is possible
to add various tricks to make this search more efficient, greatly speeding up the
search.

We start by doing a sieve modulo small primes. By the Chinese Remainder
Theorem, looking at survivors in [1, x] of sieves by a1 mod 2, a2 mod 3, . . . ,
ak mod pk, for all residue classes modulo each prime, is equivalent to looking at
all integers in (y, x + y] for 0 ≤ y < P (pk) which are relatively prime to P (pk).

Thus we can divide up work into two parts: first sieve by primes up to (say) 29
in [1, P (29)], and look for intervals with enough survivors to improve the current
bound on ρ∗(x). For each such interval, exhaust over residue classes modulo 31,
37, . . . , until either the number of survivors is less than the current bound on
ρ∗(x), or we reach a prime larger than the number of survivors, in which case
the survivors are admissible.

A number of simple theorems about ρ∗(x) may be used to speed the search. If
{s1, . . . , sl} ⊂ [1, x] is an admissible set, so is {x+1−s1, . . . , x+1−s1}. Thus,
we only need to sieve in [1, P (29)/2], cutting the work in half (x numbers should
be added on each side of the interval to avoid problems with the boundaries).

Since ρ∗(x) = ρ∗(x − 1) for x even, we only need to look at odd values of x.
Also, since

ρ∗(x − 2) ≤ ρ∗(x) ≤ ρ∗(x − 2) + 1
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we can stop as soon as we find an improvement. We only need to look at intervals
(y, x + y] where the endpoints y + 1 and x + y are survivors. If either one was
not, then the interval without that endpoint would have been checked before.
This eliminates a large fraction of the work.

One further theorem is of great use:

Theorem 1. If ρ∗(x + 2) > ρ∗(x) > ρ∗(x − 2), then x ≡ 1 mod 3.

Proof. Consider the optimal sieve on [1, x+2]. As mentioned above, 1 and x+2
must be survivors, or else we would have ρ∗(x) = ρ∗(x+ 2). We also have that 3
and x are survivors, or else the interval [5, x + 2] (respectively [1, x − 2]) would
give us ρ∗(x− 2) = ρ∗(x + 2)− 1. The only way that 1, 3, x and x + 2 can all be
survivors is if we are sieving out by 2 mod 3, and x ≡ 1 mod 3.

This allows us to skip x + 2 whenever ρ∗(x) > ρ∗(x− 2) and x 6≡ 1 mod 3. If
x ≡ 1 mod 3, the search is still greatly sped up by the requirement that 3 and x
must be survivors.

Even so, as x increases, the work becomes formidable. Finding ρ∗(x) for all x
becomes impractical, and it is quicker to just look for possible crossover points.
This is accomplished by finding ρ∗(x) for x = pk − 2, and checking if some
interval has k or more survivors. This lets us skip many values of x, and have a
higher threshold for the number of survivors.

This search was implemented on a Cray T3D. Parallelizing was accomplished
by breaking the sieve interval into equal pieces. It seemed possible that load
balancing would be a problem, if one interval took much longer than others, but
this does not seem to happen.

In any large computation, there is some question about whether the algorithm
has been implemented correctly. If some intervals were being skipped or not
handled correctly, the values of ρ∗(x) might not be right. The original program
was written by the first author in C. The second author got interested in the
problem and wrote an independent search program in Fortran, which got the
same answers and was significantly faster.

The first crossover point, with ρ∗(x) = π(x) is at x = 1417 (Jarvis discovered
an admissible set for x = 1422 with the same cardinality). Unfortunately, the
prime 1423 is followed by a prime pair 1427 and 1429, sending π(x) ahead again,
where it remains for a long time. The search was continued up to x = 1663.

We can push the bound for the crossover point somewhat higher, using an
idea of Schinzel [8]. The inequality

ρ∗(x + y) ≤ ρ∗(x) + ρ∗(y) (5)

allows us to get upper bounds for ρ∗(x) over a larger range. Using the computed
values of ρ∗(x) and (5), we find that ρ∗(x) ≤ π(x) for x ≤ 1731.

Jarvis [4] suggested looking at local maxima of Li(x)− π(x), on the grounds
that these are points where π(x) is smaller than expected, and so ρ∗(x) has
a better chance of exceeding it. One such point is x = 1423, and the next is
x = 1971. Unfortunately, a search found no admissible set of length 1971 with
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298 elements. It is possible that the crossover point is smaller than 1971, but
more likely that it is larger, perhaps at the next local maximum x = 2203, which
is computationally infeasible to check.

Jarvis also used a combination of exhaustive search on small primes and a
greedy strategy for larger primes to get an upper bound for the crossover point.
He showed that ρ∗(4930) ≥ 658 > π(4930).

Figure 3 shows ρ∗(x)− π(x) for x ≤ 1631. The two functions stay extremely
close for a long time, and make it tempting to conjecture that

lim
x→∞

ρ∗(x)

π(x)
= 1,

but as Figure 2 indicates, extrapolating from limited data can be perilous.
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Fig. 3. ρ∗(x) − π(x)
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